自适应结构与智能系统实验室

[32] Liao Z C, Bai X X*, Li Y, Deng X C, and Sun J, Design, modeling, and verification of a test bench for braking simulation of 1/4 vehicle, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, published online first 2019 (SCI: IF 1.275, doi: 10.1177/0954407019874961)

[31] Xu L, Wang D H*, Fu Q, Yuan G, and Bai X X, A novel motion platform system for testing prosthetic knees, Measurement, Vol. 146, 139-151, 2019 (SCI: IF 2.791, doi: 10.1016/j.measurement.2019.04.073)

[30] Bai X X*  and Yang S, Hybrid controller of magnetorheological semi-active seat suspension system for both shock and vibration mitigation, Journal of Intelligent Material Systems and Structures, 2019 Published Online first (SCI: IF 2.582, doi: 10.1177/1045389X19844009)

[29] Bai X X* and Chen P, On the hysteresis mechanism of magnetorheological fluids, Frontiers in Materials - Rising Stars (Special Issue), Vol. 6, 36 (9pp), 2019 (SCI: IF 2.689, doi: 10.3389/fmats.2019.00036)

[28] Zhong W M, Bai X X*, Tang C and Zhu A D, Principle study of a semi-active inerter featuring magnetorheological effect, Frontier Materials - Smart Materials, Vol. 6, 17 (9pp), 2019 (SCI: IF 2.689, doi: 10.3389/fmats.2019.00017)

[27] X. X. Bai*, F. L. Cai and P. Chen, Resistor-capacitor (RC) operator-based hysteresis model for magnetorheological (MR) dampers, Mechanical Systems and Signal Processing, Vol. 117C, No. 1, 157-169, 2019 (SCI: IF 5.005, doi: 10.1016/j.ymssp.2018.07.050)

[26] X. X. Bai*, X. C. Deng and S. Sheng, Controllability of magnetorheological shock absorber. Part II: testing and analysis, Smart Materials and Structures, Vol. 28, No. 1, 015023 (14pp), 2019 (SCI: IF 3.543, doi: 10.1088/1361-665X/aaf099)

[25] X. X. Bai*, S. Shen, N. M. Wereley and D. H. Wang, Controllability of magnetorheological shock absorber. Part I: insights, modeling and simulation, Smart Materials and Structures, Vol. 28, No. 1, 015022 (18pp), 2019 (SCI: IF 3.543, doi: 10.1088/1361-665X/aaf072)

[24] 钱立军, 杜浩, 陈朋, 白先旭*, 一种内旁通道式磁流变液悬置结构原理与试验研究, 北京理工大学学报, Vol. 38, No. 1, pp. 20-23, 2018 (doi: 10.15918/j.tbit1001-0645.2018.1.005)

[23] X. X. Bai*, W. M. Zhong, Q. Zou, A. D. Zhu, and J. Sun, Principle, design and validation of a power-generated magnetorheological energy absorber with velocity self-sensing capability, Smart Materials and Structures, 2018 (SCI: IF 2.909, doi: 10.1088/1361-665X/aac7ef).

[22] P. Chen, X. X. Bai*, L. J. Qian, and S. B. Choi, An approach for hysteresis modeling based on shape function and memory mechanism, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 3, 1270-1278, 2018 (SCI: IF 4.357, doi: 10.1109/TMECH.2018.2833459)
[21] 白先旭*, 程伟, 徐时旭, 钱立军, 坐姿人体4自由度动力学模型研究——集中参数模型及在汽车乘坐舒适性研究中的应用, 工程设计学报, Vol. 24, No. 6, pp. 638-647, 2017 (doi: 10.3785/j.issn.1006-754X.2017.06.005)

[20] P. Chen, X. X. Bai* L. J. Qian, and S. B. Choi, A new hysteresis model based on force-displacement characteristics of magnetorheological fluid actuators subjected to squeeze mode operation, Smart Materials and Structures: Letter, Vol. 26, No. 1, 06LT01 (10pp), 2017 (SCI: IF 2.909, doi: 10.1088/1361-665X/aa6ec8)

[19] X. X. Bai*, S. X. Xu, W. Cheng, and L. J. Qian, On 4-degree-of-freedom biodynamic models of seated occupants: lumped-parameter modeling, Journal of Sound and Vibration, Vol. 402C, No. 1, 122-141, 2017 (SCI: IF 2.593, doi: 10.1016/j.jsv.2017.05.018)

[18] L. J. Qian, F. L. Xin, X. X. Bai*, and N. M. Wereley, State observation based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis, Journal of Intelligent Material Systems and Structures, 2017 (SCI: IF 2.255, doi: 10.1177/1045389X17692047) (Published online first)

[17] F. L. Xin, X. X. Bai*, and L. J. Qian, Principle, modeling and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 16, 2239-2254, 2017 (SCI: IF 2.255, doi: 10.1177/1045389X16672731)

[16] X. X. Bai*, P. Jiang, and L. J. Qian, An integrated semi-active seat suspension for both longitudinal and vertical vibration isolation, Journal of Intelligent Material Systems and Structures, Vol. 28, No. 8, 1036-1049, 2017 (SCI: IF 2.255, doi: 10.1177/1045389X16666179)

[15] P. Chen, L. J. Qian, X. X. Bai*, and S. B. Choi, Velocity-dependent characteristics of magnetorheological fluids in squeeze mode considering the hydrodynamic and the magnetic field interactions, Journal of Rheology (1978-present), Vol. 61, No. 3, 455-465, 2017 (SCI: IF 3.136, doi: 10.1122/1.4978594)

[14] X. X. Bai*, N. M. Wereley, and D. H. Wang, Control and analysis of a magnetorheological energy absorber for both shock and vibration, International Journal of Acoustics and Vibration, Vol. 22, No. 1, 104-110, 2017 (SCI, doi: 10.20855/ijav.2017.22.1456)

[13] F. L. Xin, X. X. Bai*, and L. J. Qian, Modeling and experimental verification of frequency-, amplitude-, and magneto-dependent viscoelasticity of magnetorheological elastomers, Smart Materials and Structures, Vol. 25, No. 10, 105002 (16pp), 2016 (SCI: IF 2.909, doi: 10.1088/0964-1726/25/10/105002)

[12] P. Chen, X. X. Bai*, L. J. Qian, and S. B. Choi, A magneto-rheological fluid mount featuring squeeze mode: analysis and testing, Smart Materials and Structures, Vol. 25, No. 5, 055002 (13pp), 2016 (SCI: IF 2.909, doi: 10.1088/0964-1726/25/5/055002)

[11] P. Chen, X. X. Bai*, and L. J. Qian, Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode: experimental tests and modelling, Journal of Applied Physics, Vol. 119, No. 10, 105101 (10pp), 2016 (SCI: IF 2.101, doi: 10.1063/1.4943168)

[10] X. X. Bai*, N. M. Wereley, and Y. T. Choi, Magnetorheological energy absorber with dual concentric annular valves, Journal of Intelligent Material Systems and Structures, Vol. 27, No. 7, pp. 944-958, 2016 (SCI: IF 2.255, doi: 10.1177/1045389X15577659)

[9] X. X. Bai*, P. Chen, and L. J. Qian, Principle and validation of modified hysteretic models for magnetorheological dampers, Smart Materials and Structures, Vol. 24, No. 8, 085014 (12pp), 2015 (SCI: IF 2.502, doi: 10.1088/0964-1726/24/8/085014)

[8] X. X. Bai*, N. M. Wereley, and W. Hu, Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration, Journal of Applied Physics, Vol. 117, No. 17, C711 (4pp), 2015 (SCI: IF 2.168, doi: 10.1063/1.4908302)

[7] X. X. Bai* and N. M. Wereley, A fail-safe magnetorheological energy absorber for shock and vibration isolation, Journal of Applied Physics, Vol. 115, No. 17, B535 (3pp), 2014 (SCI: IF 2.168, doi: 10.1063/1.4870316)

[6] 白先旭*, 王代华, 体积一定的一种集成相对位移自传感磁流变阻尼器的性能优化, 振动与冲击, Vol. 33, No. 10, pp. 55-61, 2014
[5] X. X. Bai, W. Hu, and N. M. Wereley*, Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions, IEEE Transactions on Magnetics, Vol. 49, No. 7, pp. 3422-3425, 2013 (SCI: IF 1.363, doi: 10.1109/TMAG.2013.2241402)

[4] X. X. Bai, D. H. Wang*, and H. Fu, Principle, modeling, and validation of an annular-radial-duct magnetorheological damper, Sensors And Actuators A-Physical, Vol. 201, No. 1, pp. 302-309, 2013 (SCI: IF 1.802, doi: 10.1016/j.sna.2013.07.028)

[3] D. H. Wang* and X. X. Bai, A magnetorheological damper with an integrated self-powered displacement sensor, Smart Materials and Structures, Vol. 22, No. 7, 075001 (14pp), 2013 (SCI: IF 2.096, doi: 10.1088/0964-1726/22/7/075001)

[2] D. H. Wang* and X. X. Bai, Pareto optimization based tradeoff between the damping force and the sensed relative displacement of a self-sensing magnetorheological damper, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 13, pp. 1451-1467, 2011 (SCI: IF 1.604, doi: 10.1177/1045389X11411221)

[1] D. H. Wang*, X. X. Bai, and W. H. Liao, An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Materials and Structures, Vol. 19, No. 10, 105008 (19pp), 2010 (SCI: IF 2.096, doi: 10.1088/0964-1726/19/10/105008)


"*" denotes Corresponding Author.